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tions, with due care taken to account for the discontinuities
in the interaction flow. The convective difference scheme,A method of second-order accuracy is described for integrating

the equations of ideal compressible flow. The method is based on hidden in the Lagrangean scheme, for integrating the char-
the integral conservation laws and is dissipative, so that it can be acteristic equations is a so-called up-stream-centered (up-
used across shocks. The heart of the method is a one-dimensional wind) scheme and has been discussed as ‘‘scheme II’’ in
Lagrangean scheme that may be regarded as a second-order sequel

the previous paper [2] of this series. Remapping the La-to Godunov’s method. The second-order accuracy is achieved by
grangean results onto an Euler grid is done according totaking the distributions of the state quantities inside a gas slab

to be linear, rather than uniform as in Godunov’s method. The the upstream-centered ‘‘scheme III’’ from the same paper.
Lagrangean results are remapped with least-squares accuracy onto A substantial improvement will still result if, in the La-
the desired Euler grid in a separate step. Several monotonicity algo- grangean step, scheme II is replaced by the more accurate
rithms are applied to ensure positivity, monotonicity, and nonlinear

scheme III.stability. Higher dimensions are covered through time splitting. Nu-
An accessory technique for preserving monotonicitymerical results for one-dimensional and two-dimensional flows are

presented, demonstrating the efficiency of the method. The paper during convection, also discussed in [2], is easily incorpo-
concludes with a summary of the results of the whole series ‘‘To- rated in the method. It is applied in its crudest form [2,
wards the Ultimate Conservative Difference Scheme.’’ Q 1979 Aca- Eq. (66)] at the beginning of the Lagrangean step; a more
demic Press

sophisticated form [2, Eq. (74)] is applied in the remap step.
Further refinement of the technique has been projected.

Numerical experiments indicate that for solving two-1. INTRODUCTION
dimensional flow problems, even on a coarse grid, the
present second-order method is at least an order of magni-This paper describes a method of second-order accuracy
tude more efficient than Godunov’s method. An importantfor integrating the equations of ideal compressible flow
reason for its efficiency is that the second-order method(ICF). The method is based on the integral conservation
involves, per state quantity and per dimension, two inde-laws and is dissipative, so that it can be used across shocks.
pendent data to describe the distribution in a slab (namely,The heart of the method is a one-dimensional Lagrangean
the slab average and a representative slope value). Thisscheme, the results of which are remapped onto the desired
approach potentially has the effect of a mesh refinementEuler grid in a separate step. Higher dimensions are cov-
of a factor two.ered through time splitting.

In solving two-dimensional flow problems on a conven-The Lagrangean scheme may be regarded as a second-
tional computer, the present method is 15–20% slower thanorder sequel to Godunov’s [1] first-order Lagrangean

scheme. As in the latter, the gas is divided into slabs, another state-of-the-art method, namely, the Phoenical
and the interaction of these slabs at their interfaces is Shasta FCT [3, 9]. The slight speed disadvantage seems to
considered in detail. Whereas in Godunov’s method the be amply offset by greater accuracy. A detailed comparison
distributions of the state quantities inside a slab are taken with FCT and other algorithms may be published else-
to be linear. The information contained in the slopes of where [16].
the distributions makes it possible to attain second-order Its efficiency aside, the most pleasant property of the
accuracy in the method. present method is the clear physical picture associated with

As in Godunov’s method, the interaction of slabs is it. The discretization of initial values yields ‘‘real’’ gas slabs,
evaluated essentially on the basis of the characteristic equa- with fully specified internal distributions of state quantities.

The two basic aspects of fluid dynamics, conservation and
(nonlinear) wave propagation, are properly accounted for.Reprinted from Vol. 32, Number 1, July 1979, pages 101–136.
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The meaning of the various steps in the scheme is always specific volume, velocity, specific total energy, and pres-
sure. Denoting the specific internal energy by e we haveevident, so that formulating boundary conditions and add-

ing extra physics (radiation, multifluid) are straightfor-
ward. See also [2, Section 7] for a summary of the proper- E 5 e 1 Asu2. (6)
ties of the underlying convective scheme.

An all-purpose computer code for compressible gas dy-
The equation of state will be written asnamics, by the name of MUSCL (monotonic upstream-

centered scheme for conservation laws), was written along
p ; p(V, e). (7)the above lines by P. R. Woodward at Leiden Observatory.

Various improvements are presently being installed by him
at Lawrence Livermore Laboratory. Where further specification is desired, the ideal gas law

The present paper is constructed as follows. The physi- will be used:
cal, mathematical, and numerical aspects of the La-
grangean scheme are treated in Section 2, while the extra p 5 (c 2 1)e/V. (8c)
features needed to incorporate the scheme into a mono-
tonic multidimensional Eulerian method are presented in

Here c represents the ratio of specific heats. FormulasSection 3. Numerical results for shock tube flow and for
into which this equation of state has been inserted will besupersonic flow in a windtunnel with a step, obtained with
distinguished from formulas valid for any equation of stateMUSCL and with Godunov’s method, are displayed and
by a ‘‘c’’ following the formula number. If the equationcompared in Section 4. The conclusions from the present
of state is more complicated, it may nevertheless be ap-paper and, more generally, from the series ‘‘Towards the
proximated by Eq. (8c) using an effective value of c perUltimate Conservative Difference Scheme’’ are given
gas slab and per time step.in Section 5, together with a list of desirable further

The quantities F and G represent sources of momentumdevelopments. Finally, Appendix A adds some mathemat-
and internal energy and may be functions of all indepen-ical and numerical support to the earlier discussion of
dent and dependent variables, including those related tothe interaction of gas slabs, while Appendix B discusses
the other space dimensions. If specification is needed, de-various ways to find a representative slope value for a
pendence of V, u, E, and x will be assumed.distribution inside a slab.

Equation (2) may be written as

2. THE LAGRANGEAN SCHEME
u/t 1 (xap)/j 5 aVp/x 1 F (9)

2.1. The Lagrangean Flow Equations
to make it look more like Eqs. (1) and (3). Equation (4)

As the main building block of the method is a one- may be written as
dimensional Lagrangean scheme, I shall first discuss the
Lagrangean equations of ICF in one dimension. These read

X/t 5 xau (10)

V/t 2 (xau)/j 5 0, (1) to bring out that Eq. (1) derives from it through differentia-
tion with respect to j.u/t 1 xa p/j 5 F, (2)

An important state quantity is the Lagrangean sound
E/t 1 (xaup)/j 5 uF 1 G, (3) speed C (mass in column of unit cross section travelled

per unit time), defined byx/t 5 u. (4)

C 2 ; 2(p/V)adiabatic (12)Here the independent variables are the time t and the mass
coordinate j; the latter is coupled to the gas and relates
to the space coordinate x and the volume coordinate X by and related to the spatial sound speed c by

C 5 c/V. (13)dj 5 V21xa dx 5 V21dhxa11/(a 1 1)j ; V21 dX. (5)

For an ideal gas we haveFor a 5 0, 1, or 2 we have plane, cylindrical, or spherical
symmetry, respectively.

The state quantities V, u, E, and p are, respectively, the C 2 5 cp/V. (14c)
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Combining Eqs. (1)–(3) with the definition of C leads section, and does not include the geometrical factor xa. To
find the spatial speed with respect to the gas, W must beus to the characteristic equations
multiplied by the preshock specific volume V.

In view of numerical applications it is useful to derivep/t 1 C 2 V/t 5 G(p/e)V , (15)
an expression for W in which only one post-shock value

(u/t 2 C 21 p/t) 2 xaC(u/j 2 C 21 p/j)
appears. A practical choice is

5 auVC/x 1 F 2 C 21G(p/e)V , (18)
W 5 C[1 1 h(c 1 1)/(2c)j(p* 2 p)/p]1/2, p* $ p. (31c)(u/t 1 C 21 p/t) 1 xaC(u/j 1 C 21 p/j)

5 2auVC/x 1 F 1 C 21G(p/e)V . (19) For a centered rarefaction wave connecting two uniform
and constant states we have

The quantity (p/e)V , evaluated on the basis of the ideal
gas law, becomes

(u* 2 u) 7 h2/(c 2 1)j(V*C* 2 VC) 5 0 (32c)

(p/e)V 5 (c 2 1)/V. (17c)
across a wave moving to the right/left; furthermore,

Introducing the Riemann invariants J2 and J1, and the
p*V*c 5 pVc. (33c)entropy S (apart from an integrating factor), we may write

Eqs. (18), (19), and (15) as
From these relations one may obtain pseudo-jump equa-

dJ2 ; du 2 C 21 dp 5 hauVC/x 1 F 2 C 21G(p/e)Vj dt tions similar to (24)–(26); however, the wave speeds ap-
pearing in those equations are all different. We shall onlyon a trajectory with dj/dt 5 2xaC, (20)
use the equivalent of Eq. (25); for a rarefaction fan we

dJ1 ; du 1 C 21 dp 5 h2auVC/x 1 F 1 C 21G(p/e)Vj dt arrive at the effective Lagrangean speed

on a trajectory with dj/dt 5 1xaC, (21)

dS p dp 1 C 2 dV 5 G(p/e)V dt W ; Up* 2 p
u* 2 uU5

c 2 1
2c

1 2 p*/p
1 2 (p*/p)(c21)/(2c) C, p* , p.

on a trajectory with dj/dt 5 0. (22) (34c)

The trajectories on which Eqs. (20) and (21) hold will If the states connected by the wave are not uniform or
be called the G2 and G1 characteristics, respectively; the constant. Eqs. (32c)–(34c) are only meaningful in comput-
trajectory on which Eq. (22) holds is a streamline. Using ing the effective wave speed in the divergence center of
the ideal gas law, Eq. (22) can be integrated to the rarefaction fan.

From the symmetric appearance of pre- and postwave
states in the (pseudo) jump equations, it follows, for suffi-(pVc)t 5 (pVc)t0 exp HEt

t0
(G/e) dt9J on a streamline.

ciently weak waves, that
(23c)

W 5 As(C 1 C*) 1 Oh(C* 2 C)2j, (35)
Across a shock wave, none of the flow equations in

differential form holds. From the integral form of the con- regardless of the type of wave and the equation of state.
servation laws (1), (9), and (3), the following jump equa- For infinitesimally weak waves the wave speed W reduces,
tions can be derived: of course, to the sound speed C. It follows from Eq.

(25) that
6W(V* 2 V) 1 (u* 2 u) 5 0, (24)

6W(u* 2 u) 2 (p* 2 p) 5 0, (25) udp*/du*u(u,p) 5 C. (38)

6W(E* 2 E) 2 (u*p* 2 up) 5 0. (26)
2.2. Discretization

The gas is divided into slabs that need not have equalPostshock values are indicated by an asterisk; the La-
grangean shock speed is called 6W, where W is positive thickness Dj. Values taken at the interfaces will bear an

integer index; values taken in the middle of a slab andand the sign indicates the direction of propagation. This
shock speed, like the Lagrangean sound speed, is defined values averaged over a slab (the latter distinguished by an

overhead bar) will bear a half-integer index. In order toas the mass flux through the wave in a column of unit cross
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TABLE I

Notation Used in the Grid

Symbol Definition

ji , xi , Xi mass, Euler, volume coordinate of zone boundary
ji11/2 As(ji 1 ji11), mass-averaged mass coordinate of zone (ji , ji11)
X̃i11/2 As(Xi 1 Xi11), volume-averaged volume coordinate of zone (Xi , Xi11)

Di11/2j, Di11/2X ji11 2 ji , Xi11 2 Xi

t0 Initial time level
t1 t0 1 Dt, final level

Q̃i11/2 , Q̃i11/2 Mass-averaged value of Q in zone (ji , ji11) at t0, t1

Q̃i11/2 , Q̃i11/2 Volume-averaged value of Q in zone (xi , xi11) at t0, t1

Qi , Qi Value of Q at the boundary ji at t0, t1

kQli Average value of Q at the boundary ji during time step
kQ̃li11/2 Average value of Q̃ in zone (ji , ji11) during time step

DiQ̃, DiQ̃ Q̃i11/2 2 Q̃i21/2 , Q̃i11/2 2 Q̃i21/2

D̃i11/2Q/Di11/2j Mass-averaged value of Q/j in zone (ji , ji11) at t0

D̃i11/2Q/Di11/2X Volume-averaged value of Q/X in zone (Xi , Xi11) at t0

suppress the time index, initial values and values averaged special regard to the equations of ICF; see also [2, Sec-
tion 2].over a time step (the latter distinguished by angled brackets

around them) are denoted by writing the space index as The six quantities V, u, E, DV, Du, and DE are the only
data on the true initial values of V, u, and E inside a slaba superscript. The complete notation has been compiled

in Table I. that are retained and, in consequence, are updated in the
next time step. In addition, the Euler coordinate x or theIn each slab we shall, at the initial level t 0 of a time

step, approximate the true initial-value distributions of the volume coordinate X of each slab boundary is integrated
also. From Eqs. (5) and (40) it follows thatconserved quantities V, u, and E by linear distributions

with the correct slab integral. For instance, the distribution
Di11/2X 5 Vi11/2Di11/2j. (42)of V is approximated by

A linear distribution of E is not very useful in itself,hV(t 0, j)japprox 5 Vi11/2 1 (Di11/2V/Di11/2j)(j 2 ji11/2),
except in remapping total energy onto a Eulerian grid

ji , j , ji11 , (39) (see Section 3.2). In the Lagrangean scheme it is more
convenient to work with a linear pressure distribution in-in which the slab average is defined by
stead. Using the available discrete information, the average
pressure and pressure gradient may be recovered within

Vi11/2 ; (Di11/2j)21 Eji11

ji

V(t 0, j) dj (40) Oh(Dj)4j and Oh(Dj)2j, respectively. We first obtain

ei11/2 5 Ei11/2 2 As(u2
i11/2 1 asA (Di11/2u)2) 1 Oh(Dj)4j, (43)and the average slope is defined as

Di11/2e 5 Di11/2E 2 ui11/2Di11/2u 1 Oh(Dj)3j, (44)Di11/2V/Di11/2j ; hV(t 0, j)/jji11/2

and then, with the aid of the ideal gas law,; (Di11/2j)21 Eji11

ji



j
V(t 0, j) dj (41)

Di11/2 p 5 p(Vi11/2 , ei11/2)(Di11/2e/ei11/2
5 Di11/2V(t 0, j)/Di11/2j.

2 Di11/2V/Vi11/2) 1 Oh(Dj)3j, (45c)
The above way of finding a representative slope value will

pi11/2 5 p(Vi11/2 , ei11/2)be called interface differencing. This must however be
regarded as a temporary substitute for the more accurate 2 asA (Di11/2V/Vi11/2)Di11/2 p 1 Oh(Dj)4j. (46c)
least-squares fitting, which is used in the Eulerian remap
step (see Section 3.2). To date, a practical way of updating However, the dependence of e and p, as approximated

above, on DV, Du, and DE in practice is a nuisance. Fora slope with least-squares accuracy in the Lagrangean step
has not yet been found. The pros and cons of various ways instance, it makes the otherwise explicit monotonicity algo-

rithm of Section 3.3 implicit for the pressure. We shallof defining the slopes are discussed in Appendix B with
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therefore make no use of Eqs. (43) and (46c) but, instead, Vi11/2 5 Di11/2X/Di11/2j (53)
employ the sufficiently accurate formulas

is equivalent to using Eq. (49). In practice, Eq. (53) is
ei11/2 5 Ei11/2 2 Asu2

i11/2 1 Oh(Dj)2j, (47) preferred to Eq. (49).

pi11/2 5 p(Vi11/2 , ei11/2) 1 Oh(Dj)2j. (48)
2.3. Interaction of Slabs

Note that the slope values are independent of the slab After discretization the initial-value distributions in the
averages; they cannot be derived from the latter and must slabs (ji21 , ji) and (ji , ji11) generally meet, at ji , in a disconti-
be stored separately. This is one of the features that distin- nuity. Denoting values at the left and the right side of the
guishes the present scheme from common finite-difference interface by the indices i2 and i1 , respectively, we have
schemes. The difference with Godunov’s scheme is that,
in the latter, all slopes are taken to be zero. This accounts Vi6 5 Vi61/2 7 AsDi61/2V, (54)
for the first-order accuracy of Godunov’s scheme; see also

ui6 5 ui61/2 7 AsDi61/2u, (55)[2, Section 2]. A short discussion of Godunov’s method
can be found, for instance, in [19]. pi6 5 pi61/2 7 AsDi61/2 p. (56)

Exact formulas for updating the slab averages of the
conserved quantities result from integrating the conserva- From these follow all other state quantities needed, in
tion laws (1), (9), and (3) over a slab and a time step: particular Ci6 .

The discontinuity will exist only for a time-interval with
zero measure, so that the above initial values will notVi11/2 5 Vi11/2 1

Dt
Di11/2j

(kxauli11 2 kxauli), (49)
contribute to the time averages kuli , kpli , and kxli needed
in our scheme. In determining what happens at ji during

ui11/2 5 ui11/2 2
Dt

Di11/2j
(kxapli11 2 kxapli) the next step in time we must start by resolving the initial

discontinuity. Once resolved, the state at ji will continue
to change, because the interacting slabs generally are not1 (kapV/xli11/2 1 kFli11/2) Dt, (50)
uniform and because geometric effects and sources may
enter. Knowledge only of the first time derivatives of veloc-Ei11/2 5 Ei11/2 2

Dt
Di11/2j

(kxaupli11 2 kxaupli)
ity, pressure, and specific volume, arising at ji immediately
after the resolution, will enable us to calculate the evolu-1 (kuFli11/2 1 kGli11/2) Dt; (51)
tion of all state quantities at the interface within the desired
margin of Oh(Dt)2j.these hold regardless of the presence of discontinuities in

As is well known, an arbitrary fluid discontinuity willthe slab. As usual in control-volume schemes, for updating
break up into a pair of waves, one running to the left andV, u, and E we need to estimate the time averages kul,
one running to the right. Each of these may be a shockkpl, and kxl of velocity, pressure, and Euler coordinate at
wave or a rarefaction wave. In between the waves, velocityeach interface with first-order accuracy, that is, within a
and pressure are continuous; the specific volume generallymargin of Oh(Dt)2j. Time averages of products of these
is still discontinuous at the interface.quantities may be approximated by products of their

We may describe the state resulting immediately aftertime averages.
resolution of the initial discontinuity with the aid of theFor updating DV, Du, and Dp we must estimate, with
equations for jumps and wave speeds given in Section 2.1.the same accuracy, the interface values of V, u, and p at the
By virtue of Eq. (25) we havefinal time level t1 and take their differences; for example,

Di11/2V 5 Vi11 2 Vi. (51.5) Wi2(u*i 2 ui2) 1 (p*i 2 pi2) 5 0, (57)

The particular manner of computing the flow at the inter- Wi1(u*i 2 ui1) 2 (p*i 2 pi1) 5 0. (58)
faces is another distinguishing property of the present inte-
gration scheme and will be discussed in the next section. Here u*i and p*i are the resulting values of u and p in ji ,

The Euler coordinate of an interface is updated ac- while Wi2 and Wi1 are the absolute values of the speeds
cording to of the waves travelling into the slabs (ji21 , ji) and (ji , ji11),

respectively. Eliminating u*i from these equations yields
xi 5 xi 1 kuli Dt, (52)

p*i 5 hWi1pi2 1 Wi2pi1 2 Wi2Wi1(ui1 2 ui2)j/(Wi2 1 Wi1).from which follows the volume coordinate Xi. It is seen
from Eq. (10) that updating V according to (59)
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Since Wi2 and Wi1 can be expressed, according to Eqs. postshock region, an effect also known for Godunov’s
method. In the MUSCL code, therefore, the iterations are(31c) and (34c), in terms of p*i and the known quantities

pi7 and Ci7 , the resolved pressure value is, in principle, called for if p*(1)
i differs by more than 1% from pi61 and

are continued until p*(n)
i does not differ by more than 1.5%determined. In practice, p*i is obtained through an iterative

procedure, using from p*(n21)
i ; this appears to be satisfactory. In the explod-

ing-diaphragm calculation of Section 4, the extra iteration,
in selected points accounted for 2–3% of the computingp*(1)

i 5 h(Ci1pi2 1 Ci2pi1 2 Ci2Ci1(ui1 2 ui2)j/(Ci2 1 Ci1)
time of the Lagrangean step.(60)

In view of the low accuracy required beyond the linear-
interaction formulas it even seems wasteful to use, in the

as a starting value.
iterations, the exact wave speed formulas (31c) and (34c).

After satisfactory convergence of the pressure values,
We may as well take one approximate formula that does

u*i is determined from
not distinguish between the shock and rarefaction cases,
such as Eq. (35). This possibility is presently under study.

u*i 5 hWi2ui2 1 Wi1ui1 2 (pi1 2 pi2)j/(Wi2 1 Wi1), (61) Note that using such approximate physics does not mean
that the scheme for updating slab averages cannot distin-
guish between a shock wave and a rarefaction wave. Asan equation that results when p*i is eliminated from Eqs.

(57) and (58). The values V*i2 and V*i1 of the specific volume long as the scheme is consistent, stable, conservative, and
irreversible in time, it will raise the entropy in a slabon the left and the right sides of the contact discontinuity,

resulting at ji immediately after resolution of the initial where necessary.
The time derivatives (u/t)*i , (p/t)*i , and (V/t)*i6

discontinuity, are obtained with the aid of either Eq. (24)
or Eq. (33c), depending on the kind of wave appearing of the resolved state at ji are determined essentially from

the characteristic equations (18), (19), and (15). At inter-on either side. The resolved state is then completely deter-
mined. faces where one or more extra iterations were needed for

the resolution, we use the following version of Eqs. (18)Godunov’s own iterative procedure for obtaining p*i
brings the pressure a factor Oh(ui1 2 ui2), (pi1 2 pi2)j closer and (19), valid at a discontinuity:
to the exact value, per iteration cycle. I have abandoned
Godunov’s procedure for a more efficient one, advancing Su

tDi
2

1

C*i1
Sp

tD*
i

2 xi
aWi1Su

j
2

1
C

p
j
D

i1a factor Oh(ui1 2 ui2)2, (pi1 2 pi2)2j in accuracy per cycle.
Both procedures are explained further in Appendix A on
the basis of pressure-versus-velocity diagrams. 5 2xi

aSV* 2 V
4V D

i1
Sp

j
1 C 2 V

j
D

i1It must be understood that, when calculating smooth
flow in a uniform grid with the present method, the size
of the discontinuities is of the order Oh(Dj)3j, as opposed 1

a
xi
H C

2W
(uVC 1 u*V*C*)J

i1
1 As(F 1 F*)i1

to O(Dj) in Godunov’s method. The accuracy required at
the interfaces is only Oh(Dt)2j. In consequence, even
p*(1)

i , with an error Oh(C*6 2 C6)[(p1 2 p2), (u1 2 u2)]j p 2F C
2W HG

C Sp
eDV

1
G*
C* Sp

eD*
V
JG

i1Oh(Dj)6j is more than adequate to serve as p*i anywhere in
the smooth part of the flow. 1 Oh(C* 2 C)2

i1j, (64)
The corresponding value of u*i is

Su
tD*

i
1

1

C*i2
Sp

tD*
i

1 xi
aWi2Su

j
1

1
C

p
j
D

i2u*(1)
i 5 hCi2ui2 1 Ci1ui1 2 (pi1 2 pi2)j/(Ci2 1 Ci1), (62)

while V*(1)
i6 follows from 5 2xi

aSV* 2 V
4V D

i2
Sp

j
1 C 2 V

j
D

i2

6Ci6(V*(1)
i6 2 Vi6) 1 (u*(1)

i 2 ui6) 5 0. (63)
2

a
xi
H C

2W
(uVC 1 u*V*C*)J

i2
1 As(F 1 F*)i2

Using Eqs. (60), (62), and (63) implies interaction of the
slabs through linear waves, since the difference between 1 F C

2W HG
C Sp

eDV
1

G*

C*
Sp

eD*

V
JG

i2Wi6 and Ci6 is ignored. This approximation obviously
breaks down at interfaces lying inside a shock structure. 1 Oh(C* 2 C)2

i2j. (65)
The penalty for using a bad estimate of u*i and p*i in such
places is the enhancement of numerical oscillations in the These equations, like Eq. (35), distinguish between C and
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W, but not between a shock wave and a rarefaction wave. 2.3, yielding values of u*, p*, W6 , and V*6 . From these, if
necessary, are derived C*6 , (p/e*6 , F*6 , and G*6 . We nowThey were derived in [17]. Equation (15), applied to the

resolved state on either side of ji , reads: know all quantities occurring in Eqs. (64)–(66) except (u/
t)*, (p/t)*, and (V/t)*6 . Subtracting Eq. (64) from Eq.
(65) eliminates (u/t)*, yielding (p/t)*. Adding upSp

tD*
i

1 SC 2 V
t D*

i6
5 HG Sp

eDV
J*

i6
. (66) C*1 times Eq. (64) and C*2 times Eq. (65) eliminates (p/

t)*, yielding (u/t)*. Inserting (p/t)* into Eq. (66) then
yields (V/t)*6 .In Eqs. (64)–(66) the space derivatives on either side of

The scheme then proceeds with a half step in time, de-ji , indicated by the subscript i6 , numerically are equal to
fined by the following equations:the average space derivatives in the slabs that meet in ji .

This is consistent with the piecewise-linear representation
of initial values. kVli6 5 V*i6 1 As(V/t)*i6 Dt 1 Oh(Dt)2j, (69)

At interfaces where no extra iterations were used for the
kuli 5 u*i 1 As(u/t)*i Dt 1 Oh(Dt)2j, (70)resolution, the differences between C and W and between

quantities with and without an asterisk may be ignored in
kpli 5 p*i 1 As(p/t)*i Dt 1 Oh(Dt)2j, (71)the coefficients and source terms in Eqs. (64)–(66).

The time derivatives given by Eqs. (64)–(66) can be used kxli 5 xi 1 Asu*i Dt 1 Oh(Dt)2j, (72)
to describe the evolution of V, u, and p at ji until the waves

kxali 5 kxla
i 1 Oh(Dt)2j, (73)from ji21 and/or ji11 arrive at ji . This implies the usual

Courant condition on the time step. kVli11/2 5 As(kVli1 1 kVl(i11)2) 1 Oh(Dt)2, (Dj)2j, (74)
Using Eqs. (57), (58), (64), and (65) to calculate the flow

kuli11/2 5 As(kuli 1 kuli11) 1 Oh(Dt)2, (Dj)2j, (75)at an interface guarantees that signals coming from the
left-hand and from the right-hand sides are properly sepa- kpli11/2 5 As(kpli 1 kpli11) 1 Oh(Dt)2, (Dj)2j, (76)
rated. It is easily checked that the slab averages of the

kxli11/2 5 As(kxli 1 kxli11) 1 Oh(Dt)2, (Dj)2j, (77)Riemann invariants J2 and J1 are updated by the La-
grangean scheme according to a second-order upstream- kFli11/2 5 F(kVli11/2 , kuli11/2 , kpli11/2 , kxli11/2)centered (upwind) difference formula resembling Fromm’s

1 Oh(Dt)2, (Dj)2j, (78)[11] scheme for integrating the convection equation. Con-
vective schemes of this type were discussed in [2]. kGli11/2 5 G(kVli11/2 , kuli11/2 , kpli11/2 , kxli11/2)

2.4. Details of the Lagrangean Scheme 1 Oh(Dt)2, (Dj)2j. (79)

In each slab at t0 we are given the quantities V, u, E,
The full time step, modeled after Eqs. (50)–(53), can now

DV, Du, and DE (if the last step was an Eulerian remap)
be carried out with the proper accuracy:or Dp (if the last step was Lagrangean). At the interfaces

we are given j (constant during a Lagrangean step) and
xi 5 xi 1 kuli Dt 1 Oh(Dt)3j, (80)

x; from the latter we obtain X (see Eq. (5)). In each slab
we further obtain p and (if not already given) Dp according Xi 5 (xi)a11/(a 1 1), (81)
to Eqs. (47), (48), (44), and (45c). While calculating p we

Vi11/2 5 Di11/2X/Di11/2j, (82)may locally check the Lagrangian Courant condition on Dt,

ui11/2 5 ui11/2 2
Dt

Di11/2j
[Di11/2(kxalkpl)Dt # (Dx)/ c, (67)

2 kpli11/2Di11/2kxal]or, if c itself is not needed for other reasons,

1 kFli11/2Dt 1 Oh(Dt)3, Dt(Dj)2j, (83)c(c 2 1)(Dt)2 # (Dx)2/e, (68c)

avoiding a square-root computation in each slab (see Eqs. Ei11/2 5 Ei11/2 2
Dt

Di11/2j
Di11/2(kxalkulkpl)

(12), (13)). After a safe value of Dt has been established
for the whole grid, which may be multidimensional, we may 1 (kuli11/2kFli11/2 1 kGli11/2) Dt
proceed with steps that are exclusively one-dimensional.

1 Oh(Dt)3, Dt(Dj)2j, (84)
At each interface we first compute the values of V6 , u6 ,

and p6 according to Eqs. (54)–(56), from which follow the Vi6 5 V*i6 1 (V/t)*i6 Dt 1 Oh(Dt)2j, (85)
values of C6 , (p/e)6 , F6 , and G6 . Next, the discontinu-

ui 5 u*i 1 (u/t)*i Dt 1 Oh(Dt)2j, (86)ities at the interfaces are resolved as described in Section
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3.2. Eulerian Remappingpi 5 p*i 1 (p/t)*i Dt 1 Oh(Dt)2j, (87)

In the present method of the Eulerian equations of ICFDi11/2V 5 V(i11)2 2 Vi1 1 Oh(Dt)2 Djj, (88)
are treated by first integrating the Lagrangean equations

Di11/2u 5 ui11 2 ui 1 Oh(Dt)2 Djj, (89) and then remapping the Lagrangean results onto the Euler
grid (fixed or moving). This contrasts with the Euler ver-Di11/2p 5 pi11 2 pi 1 Oh(Dt)2 Djj. (90)
sion of Godunov’s method [4], which directly integrates
the Euler equations. The use of a completely separateIf the Langrangean step is followed by an Eulerian remap,
remap step makes the method more flexible and is indis-Dp must be converted back into DE using Eqs. (47) and
pensible with regard to any multi-fluid extension. Use of(48) and, inversely, Eqs. (45c) and (44).
a separate remap step originated with the group of W. F.The term in Eq. (83) between square brackets is identical
Noh at Livermore, and has been applied to several codesto kxali11/2 Di11/2kpl (compare Eq. (2)), with kxali11/2 defined
of the Lawrence Livermore Laboratory.as As(kxali 1 kxali11), but avoids introducing the latter quan-

The procedure of remapping is illustrated in Fig. 1. Attity. The time averages kxli and kxali may be calculated up
the beginning of the Lagrangean step, the Lagrangean andto Oh(Dt)3j, using (2x/t2)i ; (u/t)*i . The calculation of
Eulerian zones coincide (Fig. 1a); upon completion of thethe time- and space-averaged source terms may also be
Lagrangean step they no longer do. For practical reasonsvaried. The steps listed above just form the bare-minimum
we restrict the size of the time step such that no gas willscheme; in any general- or special-purpose computer code
cross more than one Eulerian zone boundary. In the pres-extra measures must be built in for guaranteeing the posi-
ent example the Eulerian boundaries are taken to be fixedtivity of directly computed quantities and of derived quan-
although in general they may be chosen to move accordingtities. The most important ones are discussed in Section
to some prescription.3.3 on monotonicity algorithms.

At the end of the Lagrangean step, a Eulerian zone may
contain matter from one, two, or three original La-3. ACCESSORY TECHNIQUES
grangean zones (Figs. 1b, 1c, and 1d). In order to determine
the correct structure some logic must be built into the3.1. Formulation of Boundary Conditions
procedure. This logic precisely is the stumbling block in

The boundary conditions to be used with the Lagrangean formulating ordinary finite-difference schemes that are up-
scheme in solving a particular flow problem are, in princi- stream centered; see Van Leer [5].
ple, the same as those needed in an analytic treatment. New Lagrangean zones are now defined, coinciding
For instance, at a left-hand boundary j0 , Eq. (57) for the again with the Eulerian zones. The new mass coordinates
jumps across the wave moving to the left and the corre- of the Eulerian zone boundaries are computed from the
sponding equation (65) relating (u/t)*0 and (p/t)*0 drop known volume coordinates, using the updated distributions
out. These have to be replaced by two other equations; in V(t1, j) in the original Lagrangean zones. For example, in
a piston problem, u*0 and (u/t)*0 would be given. the (most common) case of Fig. 1c, the new mass coordi-

Simple boundary conditions such as the reflection and nate j i11 corresponding to the fixed volume coordinate
the free-stream conditions may be simulated in the familiar Xi11 may be found from the equation
way, namely, by adding across the boundary a slab (j21 ,
j0), the structure of which is a priori given or completely Eji11

j i11 hVi11/21 Di11/2V/Di11/2j)(j 2 ji11/2)j dj

(92)
derived from the structure of slab (j0 , j1).

At the origin, in cylindrical or spherical symmetry, we
5 Xi11 2 Xi11must have u01 5 u*0 5 (u/t*)0 ; 0, while (u/x)01 and

(u*/x)01 turn into (u/x)01 and (u/x)*01 , respectively.
orThe requirement that u01 be zero implies that D1/2u must

always be taken equal to 2u1/2 . Since the initial derivatives
with respect to j are assumed to be finite down to the (ji11 2 ji11)[Vi11/2 1 AsDi11/2Vh1

(93)origin, the derivatives with respect to x vanish, and Eq.
2 (ji11 2 j i11)/Di11/2jj] 5 Xi11 2 Xi11 .(64) boils down to

The distributions of the conserved quantities resulting
in the Eulerian zones in the cases of Figs. 1c and 1d areH1 2

a
2(a 1 1)

C
WJ

01
Sp

tD*
0

(91)
not linear in j. Before the next Lagrangean step can be
taken these must be replaced by linear distributions. This
will be done through least-squares fitting. A replacement5

1
2 HW

C
GSp

eDV
1

1
a 1 1

C
W

G*Sp
eD*

V
J

01
.

distribution thus must share its zeroth moment (that is,
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FIG. 1. Movement of a Lagrangean zone through a fixed Eulerian grid. Both mass and volume coordinates are indicated. (a) Initial coincidence
of Lagrangean zone (ji , ji11) and Eulerian zone (xi , xi11). (b) After a Lagrangean time step the Lagrangean zone has exploded and contains the
Eulerian zone. (c) The Lagrangean zone has moved to the right. (d) The Lagrangean zone has imploded and is contained in the Eulerian zone.

the slab integral) and its first moment (proportional to the after division by Di11/2j; the quantity in Eq. (95) enters
the slope value after division by h(Di11/2j)3/12j. Thus, newslope) with the replaced distribution.

If a distribution Q(j) is linear in the subinterval (jL , values for V and DV, u and Du, E and DE are computed
for the Eulerian zones, which now are sufficiently definedjR) of zone (j i, j i11), as in Fig. 2a, the contributions from

that interval to the zone integral and the first moment of to serve as the Lagrangean zones for the next time step.
The above remapping procedure involves the solutionQ are given by

of the quadratic equation (93) for the mass ji11 2 j i11

convected across Xi11 in the case of Fig. 10. This costlyEjR

jL

Q dj 5 As(QL 1 QR)(jR 2 jL), (94)
operation may be avoided if we describe the mass distribu-
tion in the original Lagrangean zones in terms of density
versus volume coordinate rather than specific volume ver-EjR

jL

(j 2 j i11/2)Q dj 5 [As(QL 1 QR)
sus mass coordinate. These functions r(t 1, X) and V(t 1, j)
are related in average value by2 h(QR 2 QL)/(jR 2 jL)jhAs(jL 1 jR) 2 j i11j]

3 Ash(jR 2 j i11/2)2 2 (jL 2 j i11/2)2j
r̃i11/2 5 Exi11

xi r dX/Di11/2X
1 h(QR 2 QL)/(jR 2 jL)j

5 Di11/2j/Di11/2X (96)3 Adh(jR 2 j i11/2)3 2 (jL 2 j i11/2)3j. (95)
5 1/Vi11/2,

With the aid of these formulas the first two moments
of any piecewise linear distribution on (j i, j i11) can be and in first moment by
computed. The quantity in Eq. (94) enters the slab average

D̃i11/2r ; Exi11

xi (X 2 X̃i11/2) r(t 1, X) dX/hasA (Di11/2X)2j

5 Eji11

ji

(X 2 X̃i11/2) d(j 2 ji11/2)/hasA (Di11/2X)2j

5 2Exi11

xi (j 2 ji11/2) dX/hasA (Di11/2X)2j (97)

5 2Eji11

ji

(j 2 ji11/2) V(t 1, j) dj/hasA (Di11/2X)2j

; 2Di11/2V(Di11/2j/Di11/2X)2

FIG. 2. A typical part of a distribution that must be remapped. It is
5 2Di11/2V/(Vi11/2)2.defined in the subinterval (jL , jR) of (ji, ji11), where jL and/or jR may

of course coincide with ji and/or ji11. Both mass and volume coordinates
are indicated. (a) The distribution is linear between jL and jR , as for all

Without loss of information we may therefore exchange astate quantities Q. (b) The distribution is constant between jL and jR ;
linear distribution V(j), defined by V and DV, for a linearthis is true for the difference D̃hQ of the state quantities in the h direction

orthogonal to the sweep direction (see Section 3.4). distribution r(X), defined by r̃ and D̃r. Note that a tilde
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refers to an integration over X, just as a bar refers to an
integration over j.

The mass convected across Xi11 now follows directly
from

ji11 2 j i11 5 Exi11

xi11

hr̃i11/2 1 (D̃i11/2r/Di11/2X)(X 2 X̃i11/2)j dX

5 (Xi11 2 Xi11)[r̃i11/2 (98)
FIG. 3. The monotonicity condition (100) on the slopes at the begin-

ning of a Lagrangean step. (1) The slope of the linear distribution (solid1 AsD̃i11/2rh1 2 (Xi11 2 Xi11)/Di11/2Xj].
line) in the zone (j0 , j1) is reduced (heavy solid line) so that the values
in this zone do not go beyond the average levels (dotted line) in the

The density r is remapped with respect to X just as other adjacent zones. (2) If the mesh average reaches an extremum, the slope
is reduced to zero. (3) If the slope does not agree with the trend in thequantities are remapped with respect to j, yielding the
mesh averages, it is also reduced to zero.updated values of r̃ and D̃r in the Eulerian zones. These

are converted into V and DV, in preparation for the next
Lagrangean step. The remapping of u and E with respect
to j is not affected by the transformation of V into r.

The restriction on Dt for the composite scheme is, for
render good service for the equations of ICF. The crudesteach zone,
algorithm [2, Eq. (66)] is suited for the Lagrangean scheme,
while the more refined algorithm [2, Eq. (74)] is particularly

Dt # min(Dx/uuu, Dx/c) 1 Oh(Dj)2, Dj Dtj; (99) useful in the Eulerian remap step.
According to [2, Eq. (66)], the onset of numerical oscilla-

note that this is less stringent than the usual condition for tions in a monotonic sequence of slab averages can be
a fully Eulerian scheme: prevented by putting a limit on the slope of the distribution

inside each slab. This limiting must be so strong that the
Dt # Dx/(uuu 1 c) 1 Oh(Dj)2, Dj Dtj. (100) linear distribution will not take values beyond the average

values in the neighboring slabs. If the slab average is an
extremum with respect to the neighboring averages, theAn additional condition is needed to prevent zone-
slope must be set equal to zero. Reduction to zero is alsotangling:
dictated if the sign of the slope is not the same as the
sign of the finite-difference slope that follows from the2Du Dt # Dx 1 OhDj(Dt)2j. (100.5)
neighboring slab averages. The three different rules of
limiting are illustrated in Fig. 3, copied from [2]. They alsoThis need not imply a restriction of Dt, since the mono-
guarantee the preservation of positivity of the distribu-tonicity algorithms of Section 3.3 can limit the value of
tions.Du to the degree desired. Use of a monotonicity algorithm

The algebraic form of the algorithm, hence, Eq. (66) ofis necessary anyway, in order to prevent negative or oscil-
[2], islating values of zone averages.

A word remains to be said about evaluating mass coordi-
nates. In actually programming the remap routine, ji need (Di11/2Q)mono
not be given its accumulative value oi21

kmin
V21

k11/2 Dk11/2X
but may be locally set equal to zero. It is not necessary to
create special arrays of values of ji or even of Di11/2j. 5 5

minh2 u DiQu, uDi11/2Qu, 2 u Di11Quj sgn Di11/2Q

if sgn DiQ 5 sgn Di11Q 5 sgn Di11/2Q,

0 otherwise.

(101)
In the one-dimensional shock tube test of Section 4 the

full (monotonic) remap step took about a factor 0.55 as
much computing time as the full (monotonic) Lagrangean
step. In the two-dimensional case the factor goes up to It must be applied to V, u, and p at the beginning of the
0.75 because the number of state quantities that must be Lagrangean step.
remapped per dimension goes up (see Section 3.4). The above limiting technique will largely suppress nu-

merical oscillations, although the nonlinearity of slab inter-
3.3. Monotonicity Algorithms

actions makes it impossible to fully guarantee mono-
tonicity, especially for the largest allowed time steps. InThe monotonicity algorithms presented in the previous

installment [2] for a single linear convection equation also order to achieve stronger limiting, the factors 2 occurring
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mula for the case of Fig. 4 is identical to [2, Eq. (74)]
and reads

(Di11/2Q)mono

5 5minH 2
wi11

uDiQu, uDi11/2Qu, 2
1 2 wi11

uDi11QuJ sgn Di11/2Q

if sgn DiQ 5 sgn Di11Q 5 sgn Di11/2Q,

0 otherwise,

(102)

FIG. 4. The monotonicity condition (102) on the slopes at the begin-
ning of an Eulerian remap step. Both mass and volume coordinates are
indicated. The slope of the linear distribution (solid line) in the La- where
grangean zone (ji , ji11) is reduced such that the average value (dotted
line) in the part of the zone that has crossed/not crossed the Eulerian
zone boundary Xi11 does not overshoot/undershoot the average value in wi11 ; (ji11 2 j i11)/Di11/2j (103)
the adjacent Lagrangean zone (dotted line). The adjusted distribution
and corresponding average levels in the zone parts are indicated by heavy
solid and heavy dotted lines, respectively. is the mass fraction of the Lagrangean slab (ji , ji11) that

has crossed the Eulerian zone boundary xi11 . The algo-
rithm must be used after the new mass coordinates of the
Eulerian zone boundaries have been obtained but before
the new Eulerian slab averages are computed.in Eq. (101) may be reduced, however, not beyond 1 1

A complication would arise if we use Eq. (102) toO(DQ), lest the scheme lose its second-order accuracy. In
adjust Di11/2V. Changing this quantity means changingparticular, these factors may be made a decreasing function
the mass distribution in the convected Lagrangean zoneof the local Lagrangean Courant number s ; (Dt/Dx) c,
and, therefore, changing the mass fraction of the zonethus providing stronger limiting in regions where s ap-
that has crossed a Eulerian boundary. The mass fraction,proaches unity and the numerical damping in the scheme
however, feeds back into the monotonicity algorithmvanishes with 1 2 s. (For small Courant numbers no reduc-
(102). This complication disappears if, as advised intion is needed: although the numerical damping per time
Section 3.2, we redistribute the density over the volumestep vanishes with s, damping per unit time does not).
coordinate, rather than the specific volume over theNote that any oscillations still created in the Lagrangean
mass coordinate.step will be partly damped through the limiting in the

In the case of Fig. 4, the monotonicity condition for
Eulerian remap step.

D̃i11/2r, namely, does not involve the mass fraction wi11 but
If the factors 2 are replaced by 0, the slopes will always the volume fraction fi11 ; (Xi11 2 Xi11)/Di11/2X, which is

be set equal to zero and the Lagrangean scheme reduces already known and will not be affected by a change in
to Godunov’s scheme. This may be a convenient option

r(X). We may directly apply the algorithm (102), with
to have in a computer program, when comparisons with a w replaced by f and overhead bars by tildes, to D̃i11/2r,
first-order method have to be made. whereupon wi11 is determined with the aid of Eq. (98).

The algorithm [2, Eq. (74)] does allow the values of a Then the application of (102) to Di11/2u and Di11/2E follows
state quantity inside some slab to go beyond the range as usual.
spanned by the neighboring-slab averages. But the average As mentioned in [2], monotonicity algorithms like (101)
value in the part of the slab that, in the next convection and (102) will clip real peaks to the same degree as a first-
step, will cross a zone boundary, as well as the average order method would do. This happens in particular for V,
value in the part that will stay behind, must remain within p, and E at reflecting boundaries, where these quantities
that range. This condition can be met, again, by limiting always have an extremum. The algorithms may be im-
the slope of the distribution of the quantity, as shown proved by including extra information on what the distribu-
in Fig. 4. Note that positivity is guaranteed only for the tions looked like prior to their replacement by linear distri-
zone averages. butions.

Obviously, this milder kind of limiting is applied most For example, consider a purely Lagrangean calculation.
easily if the amount of material to be convected across the At the end of each step we know the interface values of
zone boundaries is known beforehand, as in the case of a V, u, and p, as computed in Eqs. (85)–(87). We may save
constant convection speed [2]. Fortunately, this condition these values rather than just save their differences, com-

puted in Eqs. (88)–(90). We first apply the limiter (101),is met, too, in the Eulerian remap step. The limiting for-
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FIG. 5. The monotonicity condition (104) on the slopes in a purely Lagrangian calculation. (a1) The actual initial values represent a shock inside
slab (j0 , j1). (a2) The shock structure is replaced by a linear distribution, which subsequently is monotonized (heavy line). The condition is that
the distribution inside (j0 , j1) must not take values outside the range indicated by the actual interface values at j0 and j1 (tack marks). Since those
values are the same as the average values in the adjacent slabs, we might as well have used condition (101). Note that the slope determined by
interface differencing is the same regardless of how far the shock has advanced in the zone. After monotonization, however, the slope does respond
to the shock advancement. (b1) The actual initial values have a peak inside slab (j0 , j1). (b2) The peaked distribution is replaced by a linear one,
which subsequently is monotonized (heavy line). The highest value allowed to appear in the slabs is the original interface value at j0 . According
to condition (101) the distribution would have become flat and the slope in slab (j21 , j0) would be slightly reduced.

keeping track of where it actually limits DQ. Only in those tions according to the well-known time-splitting algorithm
places we also try out the narrow-base limiter of Strang [6]. The method of time-splitting has become

popular in fluid dynamics mainly because it makes our
knowledge of one-dimensional schemes directly applicable(Di11/2Q)mono

to the multidimensional case. The decomposition of a mul-
tidimensional numerical operator into one-dimensional
components, however practical, makes it difficult to satisfy
intrinsically multidimensional conservation rules, e.g., irro-

55
minh2 u Qi11 2 Qi11/2u, uQi11 2 Qiu,

2 u Qi1/2 2 Qiuj sgn(Qi11 2 Qi)

if sgn(Qi11 2 Qi11/2) 5 sgn(Qi11/2 2 Qi)

5 sgn(Qi11 2 Qi),

0 otherwise,

(104) tationality. Particularly in an incompressible flow, the re-
sults of time-splitting are not always satisfactory; see e.g.
Fromm [20]. A discussion of the pros and cons of time-
splitting seems inappropriate here.

The number of independent state quantities to be inte-
which will yield the same limiting as (101) near a plateau grated by the n-dimensional second-order method is (n 1
but weaker limiting near a peak; see Fig. 5. If indeed (104) 1)(n 1 2), of which n 1 2 are the slab averages of V, E,
yields the weaker limiting, the value of DQ given by (104) and n are velocity components, and n(n 1 2) are the first
is adopted. moments of each of the n 1 2 state quantities in n direc-

While slope limiting is a powerful tool in achieving tions. When doing a sweep in one direction, the velocities
monotonicity or positivity, there are circumstances when and the derivatives in the other directions play no role in
additional measures must be taken. For instance, the inter- computing the interaction of slabs. In the Lagrangean step
nal energy e in a slab may become negative as a conse- they remain unaffected while in the Eulerian remap step
quence of its smallness with respect to the total energy their distributions along the sweep axis are remapped as
E or to a negative source term kGl Dt. Such errors can usual.
always be avoided, although not most efficiently, by reduc- For example, suppose that there is a second dimension
ing the time step. If the danger of negativity is limited to with space coordinate y, volume coordinate Y, mass coordi-
a few zones, the time step need only be reduced locally, nate h, and velocity v. In each Eulerian zone are given
requiring multiple time steps in the danger area. A discus- v, Djv, and Dhv. When doing a Lagrangean step in the x-
sion of such techniques, which are not specific for MUSCL, direction, these values do not change; when remapping,
falls outside the scope of this paper. the piecewise linear distribution of v over j yields new

values of v and Dj v in a Eulerian zone just as in the example
3.4. Time Splitting of Section 3.2 (see Fig. 2a). The piecewise constant distribu-

tion of Dhv over j is averaged to yield the new value ofThe multidimensional Eulerian flow equations, formu-
Dhv in a Eulerian zone (see Fig. 2b).lated on the basis of an orthogonal coordinate system, may

be approximated with second-order accuracy by applying For the mass coordinate ji in the x-direction of some
Eulerian zone stretching from yj to yj11 in the y-direction,the one-dimensional Eulerian scheme in alternating direc-
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the mass accumulated between yj and yj11 up to xi may be tunnel; across the left-hand boundary inflow at Mach 3
persists (u2y 5 3, c2y 5 1), while across the right-handtaken. The mass coordinates hj are defined similarly. When

sweeping in one direction, the mass coordinates in the boundary free outflow is prescribed. The height of the step
is one-fifth the entrance height H of the tunnel, while theorthogonal direction are affected. They need not be re-

mapped as the other quantities, but may be reconstructed length of the narrow part of the tunnel is 2.4 times the
entrance width.during the next sweep in the orthogonal direction. See,

however, the remark concluding Section 3.2. The pictures 7–9 show the flow after about 4 vertical
sound-crossing times H/c2y for grids with different meshMultidimensional boundary conditions that must be ap-

plied to surfaces not orthogonal to any of the coordinate sizes. In all cases the meshes are square and the timestep
used was 90% of the maximum allowed by condition (99).axes may be decomposed into a sequence of one-dimen-

sional orthogonal boundary conditions just as done in the Figure 7 gives the most detail, with H covered by 20
meshes, while in Fig. 8 H is covered by 10 meshes.SLIC method (simple Lagrangean interface calculation)

of Noh and Woodward [7] for the boundaries between Figure 9 shows what MUSCL achieves when the tunnel
entrance is only 5 meshes high and the step, therefore,different fluids. A refinement of that method has recently

been formulated by Woodward [8], with particular refer- is only one mesh. The Mach stem still appears to be
visible; however, it is an artifact due to the monotonicityence to the physics of slab interaction included in the pres-

ent second-order scheme. algorithms (101) and (102) which force pressure contours
to be perpendicular to a reflecting wall (see the conclusion
of Section 3.3). The performance on a grid this coarse4. NUMERICAL EXAMPLES
could be substantially improved through the use of the
narrow-base monotonicity criterion (104).To illustrate the performance of the method described

previously, some one- and two-dimensional results ob- The results in Figs. 7–9 are far from stationary. The
steady flow pattern, obtained after 16 vertical sound-cross-tained with the MUSCL code are shown in Figs. 6–11.

Figure 6 shows the results of an application of the ing time with a grid of 45 3 15 meshes, is shown in Fig. 10.
The remaining Fig. 11 shows the results of Godunov’smethod to the same one-dimensional shock tube problem

as Sod [18] used for testing twelve schemes and combina- method, approximately realized in MUSCL by setting all
slopes equal to zero through an over-restrictive mono-tions of schemes. The tube extends from x 5 0 to x 5 1

and is divided in 100 computational cells. The gas is initially tonicity condition (see Section 3.3). These results for
H/Dy 5 30 are mimicked by the second-order MUSCLat rest, while at x 5 0.5 the density and the pressure jump

down a factor 8 and a factor 10, respectively. Numerical scheme with H/Dy 5 10 (Fig. 8). This means a dramatic
increase in efficiency when going to second order, sinceand exact solutions for r, u, p, and e are displayed at the

time that the shockwave moving to the right has approxi- Godunov’s method, even when programmed efficiently,
will not run more than twice as fast as MUSCL.mately reached x 5 0.75. The figure allows direct compari-

son with Sod’s figures and indicates that the present The execution speed of MUSCL appears to be quite
satisfactory. For the 1008-cell grid of Fig. 7, a time stepmethod is superior to all methods tested by Sod, including

Phoenical SHASTA [3]. The latter scheme, however, was on the IBM 370/158 with MUSCL requires 8.78 seconds,
or 2.33 times as much as the ALFVEN code [9], developedused with too high a value of the Courant number, so that

monotonicity was not preserved. by W. J. Weber of Utrecht Observatory on the basis of
Phoenical SHASTA [3]. The latter code, however, mustFor this 100-cell one-dimensional flow problem the CPU

time required for advancing one time step with MUSCL run at values of the sonic and convective Courant numbers
not greater than one half, so that MUSCL ends up beingon the IBM 370/158 of Leiden University (MVS operating

system) was 0.47 seconds, corresponding to 0.17 seconds 15–20% slower than ALFVEN in absolute time advance-
ment. The difference of a factor 2 to 3 in CPU time betweenon the CDC 6600 (SCOPE 3.4 operating system) of the

Energy Center of the Netherlands in Petten. These num- a MUSCL step and an ALFVEN step is readily explained
by the fact that in a two-dimensional calculation, withbers do not include calls to plotting routines and therefore

cannot directly be compared to the running times given the MUSCL code three times as many independent state
quantities are updated as with the ALFVEN code. Theby Sod, which are substantially larger. Furthermore, Sod’s

coding of the various schemes may not have been op- above lambda-shock problem has not yet been run satis-
factorily with ALFVEN, but a linear error analysis andtimized.

Figs. 7, 8, 9, and 10 show some two-dimensional results the comparative shock-tube test give no reason to believe
that ALFVEN would be more accurate than MUSCL.obtained with MUSCL by P. Woodward at Leiden Obser-

vatory. Drawn are pressure contours for flow at Mach 3 Recently, Boris and Book formulated a low-phase-error
SHASTA-like algorithm, the explicit FCT-LPE [10], thatthrough a tunnel with a step, in the case of plane symmetry.

At t 5 0 the flow is impulsively started everywhere in the may be more accurate and efficient than the present version
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FIG. 6. Exact solution (line) and cell averages (circles) of r, u, p, and e obtained with MUSCL (Eulerian) for the same exploding diaphragm
problem as that used by Sod [18]. Initial values u ; 0; r 5 p 5 1 for x , 0.5; r 5 0.125; p 5 0.1 for x . 0.5; c 5 1.4. Courant number 0.9; Dx 5

0.01. Output is after 34 time steps at t 5 0.14154.

of MUSCL. As mentioned earlier, in MUSCL there is son between the latest version of MUSCL and other codes
has been projected.room for improvement, too. Provisional results obtained

by Woodward [16], using least-squares fitting of slopes and In conclusion, the present method for ICF appears to
be at least as efficient as other good second-order methods.the slope limiter (104) in the Lagrangean step, show a

dramatic increase in accuracy for coarse grids. A compari- Those already addicted to Godunov’s first-order method
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FIG. 7. Pressure contours at t 5 4H/c2y , obtained with the second-order MUSCL code, for Mach 3 flow in a windtunnel with a step (plane
symmetry). Entrance height 20 zones, step height 4 zones. Sonic/convective Courant condition (99) used with safety factor 0.9. The contours are
drawn using the information contained in the average values and the slopes given for each Eulerian zone. The figure is courtesy of P. R. Woodward.

may welcome the second-order method as an extension ‘‘zero-average phase error’’ scheme for the convection of
vorticity actually is the simplest upstream-centered second-with greatly increased efficiency.
order convection scheme. Fromm’s scheme was regarded
by me as a good candidate for conversion into a conserva-5. CONCLUSIONS AND DESIDERATA
tive scheme for ICF. But first the matter of numerical

The integration scheme for the equations of ideal com- oscillations had to be settled.
pressible flow presented in this fifth installment of the In the first installment [12] the basic technique for pre-
series ‘‘Towards the Ultimate Conservative Difference serving monotonicity during one-dimensional convection
Scheme’’ combines the ideas developed in the foregoing in- was developed on the basis of the Lax–Wendroff scheme.
stalments. When made monotonic, the latter scheme loses the conser-

vation form: it involves too few (three) initial values toThe goal of the work reported in the series was to derive
a second-order method for ICF not plagued by the pests combine monotonicity and conservation. Fromm’s scheme,

based on four initial values in an upstream-centered se-arising in the use of Lax–Wendroff-type schemes, that
is, oscillatory solutions, nonlinear instabilities, and large, quence of nodal points, offers the freedom to achieve this

desirable combination. This was shown in the second in-predominantly negative, phase errors. That such a method
might very well exist was indicated by Fromm [11], whose stallment [13]. As explained in the third installment [5],

FIG. 8. Same as Figure 7, but for an entrance height of 10 zones and a step height of 2 zones.
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FIG. 9. Same as Figure 7, but for an entrance height of 5 zones and a step height of 1 zone.

the conversion of Fromm’s convection scheme into a down to a prescription for limiting these gradients. This
was reported in the fourth installment [2].scheme for ICF offers serious problems, in particular be-

cause of the upstream centering. In the present installment, the upstream-centered con-
vection schemes from [2] are forged into the method inThe solution to these problems was to follow Godunov’s

[1] way of turning the first-order upstream convection two places. In the Lagrangean step, the interaction of gas
slabs at their interface is calculated by inserting upstream-scheme (used before by Courant, Isaacson, and Rees [14]

for the characteristic equations of ICF) into a conservative centered information into the characteristic equations.
This has the effect of convecting the Riemann invariantsscheme for ICF. Godunov uses the control-volume formu-

lation to ensure conservation and therefore works with J6 along the characteristics G6 with an upstream-centered
scheme. Furthermore, in the Eulerian remap step, Eulerianslab-averaged values of state quantities, rather than with

nodal-point values. When reformulating Fromm’s convec- results are obtained from the Lagrangean results by con-
vecting the Lagrangean distribution through the Euleriantion scheme for a control volume it turned out that the

scheme could be greatly improved if, in addition to the grid with the aid of another upstream-centered scheme.
Note that the latter approach differs from Godunov’s [4],slab averages, independent slab-averaged gradient values

are used to represent the distribution of the convected where the Eulerian equations are approximated in a single
step with an upstream-centered scheme.quantity. The monotonicity algorithm derived in [5] boils

FIG. 10. Same as Figure 7, but at t 5 16 H/c2y , for an entrance height of 15 zones and a step height of 3 zones.
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FIG. 11. Same as Figure 7, but obtained with Godunov’s scheme, realized approximately in the MUSCL code by ‘‘monotonizing’’ all slopes
down to zero. Entrance height 30 meshes, step height 6 meshes.

The various monotonicity algorithms from [2] also find pressure versus velocity. In Fig. A1 are indicated the initial
states I2 5 (u2 , p2) and I1 5 (u1 , p1) and the two curvestheir place in both the Lagrangean and the Eulerian step.

Having been climbing up, five installments long, towards A2 and A1 representing all states that can be reached from
I2 and I1 through a rarefaction wave or a shock wave. Thethe ultimate conservative scheme (which must be regarded

as a symbol of man’s never-ending striving for perfection waves generating A2 move to the left, those generating
A1 move to the right. The rarefaction branch (Poissonrather than one particular method waiting for its discov-

ery), I feel like I have reached a plateau wide enough to adiabat) and the shock branch (Hugoniot curve or shock
adiabat) of such curves have different equations, corre-allow a good stretch. The plateau may be widened by

removing some already loose rocks: barriers that stand in sponding to the different expressions (34c) and (31c) for
the wave speeds. As follows from Eq. (25), the wave speedsthe way of improvement of the accuracy and the efficiency

of the method. Some desirable improvements are the im- 2W2 and W1 appear in the diagram as the slopes of the
chords drawn from I2 and I1 to the points representingplementation of least-squares fitting of the distributions at

the end of the Lagrangean step, of a monotonicity algo- the respective postwave states. In the weak-wave limit,
these chords become the tangents to A2 and A1 at I1 andrithm that clips peaks less strongly, and of approximate

adiabats in the calculation of slab interactions, useful for
an arbitrary equation of state.

The surroundings of the plateau invite some interesting
small excursions, for instance, to the domain of shallow-
water flow. The lowest order shallow-water equations have
the same form as those used presently, with p p V22 and
the energy equation missing, and are easily incorporated
in the method.

A major excursion would be the implementation of the
method for ideal compressible magneto-hydrodynamics.
This would require a full reconsideration of the slab inter-
action problem and a rederivation of the associated formu-
las. It is the price we have to pay for including in the
method more of the physical content of the underlying
equations than just their conservation form.

APPENDIX A: NUMERICAL RESOLUTION
OF A FLOW DISCONTINUITY

FIG. A1. Resolution of a flow discontinuity, as represented in the
(u, p) plane. The resolution involves a rarefaction wave moving to theHow to resolve an arbitrary flow discontinuity is illus-

trated in Figs. A1, A2, and A3, which are diagrams of left and a shock wave moving to the right.
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I2 ; the absolute values of their slopes are the initial sound
speeds C2 and C1 . The intersection point of the curves
represents the resolved state R 5 (u*, p*). In Fig. A1 this
state results from a rarefaction wave facing left and a shock
wave facing right. For an extensive discussion of such dia-
grams see e.g. Courant and Friedrichs [15].

The equations of the adiabats are too complicated to
allow explicit evaluation of u* and p*. The iterative proce-
dure for finding R indicated by Godunov [1] is illustrated
in Fig. A2, for the case of two shock waves. As a first guess
for p* we may adopt the pressure value from the state
R(1) 5 (u*(1), p*(1)) that is found by intersecting the tan-
gents to A2 and A1 at I2 and I1 . Algebraicly it is given by
Eq. (60).

Next, p*(1) is inserted into the appropriate formula
FIG. A3. A second-order iteation method of resolving a flow disconti-

(either (34c) or (31c)) to yield W (1)
2 and W (1)

1 . In the nuity, illustrated in the (u, p) plane. Double rarefaction case.
picture this is indicated by drawing the chords from I2

and I1 to the points R(1)
2 and R(1)

1 on A2 and A1 where
the pressure equals p*(1); the associated velocities are
called u*(1)

2 and u*(1)
1 . Intersecting those chords yields the p*(n11) 5 p*(n) 2 Z(n)

2 Z(n)
1 (u*(n)

1 2 u*(n)
2 )/(Z(n)

2 1 Z(n)
1 ),

second estimate p*(2), the algebraic value of which is (A1)
found by inserting W (1)

2 and W (1)
1 into Eq. (59). The

iterations are continued till the desired accuracy is where Z(n)
2 and Z(n)

1 are the absolute values of the tangent
reached; then u* follows from inserting the latest wave- slopes. The faster convergence is achieved at a minor extra
speed value into Eq. (61). expense of computing time. The tangent slope value

Godunov’s procedure reduces the difference between namely is a byproduct of the wave speed calculation; on
the iterated and exact pressure values by a factor Oh(u1 2 a curve A through the initial state (u, p) we have
u2), (p1 2 p2)j per iteration cycle. P. J. Bedijn of Leiden
Observatory suggested a more efficient procedure, advanc-
ing a factor Oh(u1 2 u2)2, (p1 2 p2)2j in accuracy per Udp*

du*UA

5 5
2W2

W 2 1 C 2 W if p* $ p,

C* 5 C(p*/p)12(c21)/(2c) if p* , p.

(A2c)
iteration cycle; this is illustrated in Fig. A3 for the case of
two rarefaction waves. Instead of intersecting chords
drawn from I6 to R(n)

6 to arrive at R(n11), we intersect the
When calculating the wave speeds W (n)

6 , which are neededtangents to A6 in the points R(n). The equation for
to obtain u*(n)

6 from Eqs. (58) and (57), the tangent slopesp*(n11) becomes
Z(n)

6 can be evaluated from the intermediate results; in
particular, no extra square root or exponentiation is in-
volved. Once p* has been obtained with sufficient accuracy,
u* follows from the latest values of u*6 and Z6 through

u* 5 (Z2u*2 1 Z1u*1)/(Z2 1 Z1). (A3)

A pressure value resulting from the intersection of
chords or tangents, in particular p*(1), may become nega-
tive if u1 @ u2 . The pressure value must therefore be
limited downward by the smallest value pmin that is signifi-
cant for the flow considered. If and only if p*(2) is negative
again, the exact solution would involve cavitation and p*
can be left at pmin (see Fig. A4). For u* we may take u*(2).

APPENDIX B: UPDATING SLOPES

In the previous paper [2] of the present series, three waysFIG. A2. Godunov’s iterative method of resolving a flow discontinu-
ity, illustrated in the (u, p) plane. Double shock case. of updating a slope were presented, namely, conventional



SEQUEL TO GODUNOV’S METHOD 247

discontinuity or a point where the mesh is suddenly refined
a factor O(1). These extra errors also occur in Godunov’s
method [1, Section 7]. The main advantage of differencing
slab averages is a reduction in computer storage space, as
compared to the requirements of the other ways of evaluat-
ing a slope.

With slab-average differencing, the scheme for convect-
ing the Riemann invariants, underlying the present
method, boils down to the upstream-centered second-or-
der scheme of Fromm [12], just as Godunov’s method
boils down to the upstream-centered first-order scheme of
Courant, Isaacson, and Rees [15].

For those who appreciate the simplicity of determining
slopes by slab-average differencing, it is useful to know
there is a way of doing this so that the crudest monotonicity

FIG. A4. Failure of the second-order resolution method in case the
condition is automatically accounted for. As indicated inflow cavitates.
[2, Eq. (67)], in a uniform grid one simply has to determine
Di11/2Q by harmonically averaging DiQ and Di11Q, rather
than algebraically:

finite differencing, interface differencing, and least-squares
fitting. Following the first way, a slope value is obtained (Di11/2Q)mono

(B2)

by centrally differencing the average values in the adjacent
slabs; in a uniform grid we have

5 5
2 DiQ Di11Q
DiQ 1 Di11Q

if sgn DiQ 5 sgn Di11Q,

0 otherwise.Di11/2Q 5 As(DiQ 1 Di11Q) 5 As(Qi13/2 2 Qi21/2). (B1)

Such a value need not be stored along with the slab av-
In the Eulerian remap there is no excuse for not usingerages.

the least-squares formula. In the Lagrangean step, how-The second way, differencing interface values, has been
ever, least-squares fitting offers serious problems. To illus-followed in the Lagrangean step (Sections 2.2, 2.4) while the
trate these, let us multiply Eq. (1) by (j 2 j) and integratethird way, basing the slope value on the first moment of the
it over one Lagrangean zone and one time step; this leadsdistribution, has been followed in the Eulerian remap step.
to a formula for updating DV:Both techniques require separate storage of the slope value.

A linear analysis of the present method, given in [2],
asA (Di11/2j)2(Di11/2V 2 Di11/2V) 1 Di11/2j(Xi11/2 2 Xi11/2)

(B3)
shows that the moment-fitting technique of Section 3.1
(represented by scheme III in [2]) is vastly superior to the 2 AsDt Di11/2j(kxauli 1 kxauli11) 5 0
other finite-difference techniques: its evolutionary convec-
tive error is the smallest by two orders of Dj. Interface- or
value differencing (scheme II) and slab-average differenc-
ing (scheme I) have equal convection errors (for Dt/Dj R

Di11/2V 5 Di11/2V 1 6(Dt/Di11/2j)
(B4)0), whereas the maximum dissipative error per time step

in the former is a factor 3 smaller than in the latter, but [kxauli 1 kxauli11 2 2kxauli11/2] 5 0.
still a factor 3 larger than for moment-fitting.

A peculiarity of interface-value differencing is that it The term between square brackets is of the order Oh(Dj)2j
can drastically change the slope value over a vanishingly and cannot be calculated adequately without knowledge
small time step. For example, a shock wave barely penetrat- of the second time derivative of u at the interfaces. If we
ing into a uniform slab will raise all slope values in that leave an error
slab from zero to the jump values divided by Dj. The effect
can be offset by application of a monotonicity algorithm,

Ah(Dt)2h2(xau)/t 2ji.i11which is recommended anyway (see Fig. 5a).
Slab-average differencing has the inherent disadvantage

in kxauli,i11 , as in Eq. (69), but, likewise, an errorof involving data from neighbouring slabs. This, of course,
is the cause of its larger dissipation error; it also leads to
extra errors if the difference is taken across a strong contact Ah(Dt)2h2(xau)/t 2ji11/2
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in kxauli11/2 , the errors of the order Oh(Dt)2j in the brack- given up. This scheme therefore has not yet been imple-
mented for the equations of ICF.eted term cancel and the resulting formula for updating

DV is perfectly valid. However, it does not reduce to the
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